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AN ANALYTICAL APPROACH TO COMPUTING STEP SIZES FOR
FINITE-DIFFERENCE DERIVATIVES

Ravishankar Mathur∗

Most numerical optimization methods require a derivative to determine search di-
rections and magnitudes, and the prevailing method of computing these deriva-
tives is the finite-difference approximation. While computationally straightfor-
ward, a finite-difference approximation requires estimation of a step-size param-
eter. An algorithm is presented here that computes the optimal step size for a
finite-difference approximation of an unknown function’s derivative. The algo-
rithm’s mathematical foundations are derived and numerical examples are given.
The computed step size minimizes the combined roundoff and truncation errors
in the finite-difference derivative, and the algorithm provides information on the
validity of the step size with respect to changes in the independent variables. It
is shown that the computed step size is correlated to the true optimal step size
by a closed-form equation. The algorithm is also able to compute the function’s
condition error without additional user input.

INTRODUCTION

The problem of numerically determining the derivative of a function has been given an im-
mense amount of attention from many subfields of science and engineering. Many algorithms have
emerged that compute the derivative with varying levels of accuracy, generality, computation speed,
and implementation complexity. These algorithms can be classified as either analytical, algorithmic,
or finite-difference.

Analytical methods are those in which the derivatives are derived specifically for a particular
class of problems. They produce exact solutions, but the time required to derive, implement, and
validate the derivatives can be prohibitively high. In addition, computation of analytical derivatives
can be considerably slower for complicated problems than any of the other methods. Finally, if the
mathematical representation of the problem changes, the entire process of deriving, implementing,
and validating the derivatives must be repeated. A prime example of the pros and cons of analytical
differentiation algorithms is the Variational Model by Ocampo et al.,1–3 which computes partial
derivatives for multi-segment spacecraft trajectories. The process of deriving the equations for
general trajectories and then implementing those equations in a particular programming language
takes many months, and debugging the implemented code takes several more months. However, the
end result is a function that produces derivatives accurate to almost full precision for trajectories
with long times of flight.

Algorithmic differentiation, also known as automatic differentiation, involves analyzing a func-
tion’s implementation and then differentiating each instruction within the function successively.4–8

These methods have near-analytical accuracy and acceptable runtimes, but require an intimate
∗Sr. GN&C Engineer, Emergent Space Technologies, Greenbelt MD. AIAA Member.

1



analysis of the function being differentiated. For compiled languages such as C/C++ or Fortran,
complex-step differentiation requires a rigorous modification of the function code itself, a task
which can be prohibitive for complicated functions or for large projects. When applied using
complex numbers, algorithmic differentiation is closely related to the complex-step differentiation
method,9–16 which allows near-analytical computation of numerical derivatives using perturbations
in the complex plane without the precision loss caused by differencing.

The most common numerical differentiation algorithms are the family of finite-difference algo-
rithms. A finite-difference algorithm for computing a derivative is fast and easy to implement, has a
very low runtime, and is completely independent of the function on which it operates. The only in-
put required is a parameter associated with the independent variable of differentiation, known as the
perturbation step size. There are guidelines as to what values can be used for this parameter, which
makes the algorithm very simple to implement and use. Because of this ease of use, finite-difference
algorithms have become the de facto accepted methods for numerically computing derivatives.

The tradeoff for this ease of use is reduced accuracy in the computed derivatives, as compared
to the other derivative computation methods. This loss of accuracy is twofold; first due to mathe-
matical truncation error in the finite-difference formulation, and second due to numerical roundoff
error inherent to every finite-precision computation. In addition, a sufficiently incorrect choice of
the perturbation step size can exacerbate either of these errors to the point where the computed
derivative is too inaccurate to be of any use. When determining the gradient of multiple functions
with respect to multiple independent variables, it quickly becomes difficult to estimate the optimal
perturbation step size for each variable. Here, the optimal step size is defined as the one which,
for a given variable, minimizes the sum of truncation and roundoff errors in the derivative of each
function with respect to that variable. Complicating this problem further is the fact that as the value
of the variable changes significantly, the optimal perturbation step size may also change.

The importance of correctly estimating the perturbation step size is seen by optimizing a three-
impulse transfer from a Moon-centered orbit to a specified V∞ vector.17 Assuming a circular initial
lunar orbit, the general geometry of such a transfer is as follows. The first impulse is mostly an
apoapse-raising maneuver, the second impulse (near apoapse) mainly changes plane, and the third
impulse (near periapse) inserts the spacecraft onto a departure hyperbola with the desired V∞ vec-
tor. Although it has been shown that such a maneuver often outperforms a single-impulse transfer,18

the added complexity of coordinating multiple impulses makes numerical optimization a difficult
task. This difficulty occurs, in no small part, because computing derivatives for the system Jaco-
bian matrix using finite-difference methods requires considerable effort to find suitable step sizes.
Great strides have been made in efficiently computing initial guess solutions for the three-impulse
transfer, which helps to increase the chance of successful optimization.19, 20 However, due to the
sheer amount of time spent finding step sizes (especially after the impulses were converted to finite
burns), researchers have resorted to alternate specialized method just to compute the derivatives of
the problem.1, 3

The challenge of determining a step size that balances truncation and roundoff errors, some-
times referred to as the ‘step-size dilemma’, has received some academic attention. The Richardson
Extrapolation method combines multiple low-order finite-difference approximations using succes-
sively decreasing step sizes to produce a single high-order approximation.21, 22 Alternatively, if
high-order derivatives and roundoff errors of the function are known, then methods exist to estimate
the optimal step size.23, 24 For simple analytical functions, such as combinations of polynomials or
trigonometric functions, the roundoff error is often equal to the precision of the machine. However,
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for complicated user-defined functions, it is nearly impossible to know the function’s internal errors
beforehand. Due to this limitation, the solutions given to the step-size dilemma have been deemed
as useful only for trivial functions, and only in an academic sense.25

This study, taken from research presented in the author’s doctoral dissertation,26 approaches the
step-size dilemma with the assumption that nothing is known about the implementation of the func-
tion being differentiated. Accurate expressions for both roundoff and truncation errors are derived,
in a similar fashion as is done in previous research.24 However, this study further analyzes both of
these errors, and an algorithm is created that iteratively determines the optimal step size to minimize
the total error in the derivative. This algorithm has several benefits over existing step-size estimation
algorithms and rules of thumb, including:

• The function’s condition error is estimated. This provides a measure of how much error accu-
mulates within the function implementation itself, and can be useful for function debugging.

• No initial guess is required for the maximum possible step size.

• The algorithm can be used with any finite-difference approximation method, including the
common forward- and central-difference methods.

• The algorithm determines the maximum allowable change in the independent variable for
which the computed optimal step size is valid. Using this validity range, the algorithm need
only be called when necessary.

• Multidimensional functions are handled intelligently, with no extra function calls.

PROBLEM STATEMENT

Given a scalar function f of a scalar independent variable x, the derivative of the function with
respect to a particular value of x is formally defined as

df

dx
= lim

h→0

f(x+ h)− f(x)

h
(1)

where h is a perturbation step-size for x. For nontrivial functions, such a limit process cannot be
directly performed, and so a Taylor Series formulation is employed. Although there are many such
formulations, the simplest one proceeds as follows.

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

3!
f (3)(x)h3 + · · · (2)

f ′(x) =
f(x+ h)− f(x)

h
− 1

2
f ′′(x)h− 1

3!
f (3)(x)h2 − · · · (3)

f ′(x) =
f(x+ h)− f(x)

h
+O(h) (4)

where O(h) encompasses all higher order terms. This equation, known as the forward-difference
derivative approximation, differs from Eq.(1) in that the step-size h is treated as a parameter instead
of a limiting index.

If the higher-order terms are ignored, then Eq.(4) becomes an approximation to the true derivative,
with an error O(h) proportional to the chosen h perturbation. A cursory examination of the O(h)
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terms shows that O(h)→ 0 as h→ 0, which implies that h should be made as small as possible to
maximize the accuracy of the approximation.

However, a more in-depth analysis of Eq.(4) indicates a contradiction to the above rule. On any
finite-precision machine such as a computer, numbers are represented with a fixed number of binary
digits.27 Because of this, all mathematical operations have an inherent loss of accuracy, as extra
digits involved in the computation must be discarded. This phenomenon, called roundoff error,
has a significant effect on the finite-difference operation in Eq.(4). In particular, the relative errors
caused by the subtraction operation tend to increase as the step-size h is decreased, implying that h
should be made as large as possible to minimize these errors. This contradiction to the preceding
requirement is the step-size dilemma.
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Figure 1. Absolute error in f(x) = sin(x) with x = π/4, showing the step-size
dilemma. The O(h) forward-difference derivative approximation is used. The goal is
to determine h such that the error in f ′(x) is minimized.

The classical step-size dilemma can be seen by plotting the error in the finite-difference derivative
(FDD) as a function of the step size h, as illustrated in Figure 1. It is seen that there exists a region
of h for which the total error in f ′(x) is minimized. If h is chosen at the low end of that range,
then increased roundoff error is sacrificed in favor of decreased truncation error. Conversely, if h
is chosen at the high end of that range, then the truncation error in f ′(x) increases, but roundoff
error is virtually nonexistent. The optimal choice of h depends on requirements of the quality of the
derivative, as discussed in the results section of this study.

ERROR FORMULATION

Truncation Error

The higher-order remainder terms O(h) in the forward-difference approximation of Eq.(4) give
the exact error associated with a particular value of the step-size h. These terms are generally not
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known, because they involve the higher-order derivatives of f(x). However, they can be consoli-
dated by using the Lagrange form of the Taylor series remainder,28

O(h) =
−1

2
f ′′(ξ)h (5)

x < ξ < x+ h (6)

where the exact value of ξ is undetermined. As h → 0, ξ approaches x and the coefficient of h in
the remainder approaches a limit,

lim
h→0

O(h) =
−1

2
f ′′(x)h (7)

which is the expected truncation error in a forward difference approximation using a sufficiently
small step size h, assuming that f ′′(x) is smooth and bounded in the neighborhood of x.

A more accurate FDD approximation is the central-difference approximation. Using the Lagrange
form of the Taylor series remainder term, the 2nd order central difference approximation is given as

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

3!
f (3)(ξ+)h3 (8)

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 − 1

3!
f (3)(ξ−)h3 (9)

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (10)

where the Intermediate Value Theorem is used to combine the two remainder terms,

O(h2) =
−1

3!
f (3)(ξ)h2 (11)

x < ξ+ < x+ h (12)

x− h < ξ− < x (13)

x− h < ξ < x+ h (14)

Again, the exact values of ξ+, ξ−, and ξ are undetermined. The expected truncation error for
sufficiently small h values, assuming that f (3)(x) is smooth and bounded in the neighborhood of x,
is,

lim
h→0

O(h2) =
−1

3!
f (3)(x)h2 (15)

Because each finite-difference approximation has a unique truncation error equation based on
its particular formulation, it becomes necessary to develop a general method to approximate the
truncation error. This is done by analyzing the general form of a finite-difference equation,

f (d)(x) = FD(d)
n (x, h) + C(x, h)hn (16)

where f (d)(x) is the unknown true dth derivative, FD(d)
n (x, h) is the particular finite-difference

approximation (in the absence of roundoff errors), n is the order of the approximation, and C(x, h)
is the coefficient of the truncation error term. In Lagrange form,

C(x, h) = a1f
(n+d)(ξ) (17)

x− a2h < ξ < x+ a3h (18)
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where a1, a2, and a3 are constants determined by the particular finite-difference approximation.
Although C(x, h) is undetermined (because it involves the unknown ξ), it can be approximated by
using two step sizes h1 and h2, where 0 < h2 < h1,

f (d)(x) = FD(d)
n (x, h1) + C(x, h1)h

n
1 (19)

f (d)(x) = FD(d)
n (x, h2) + C(x, h2)h

n
2 (20)

If h1 and h2 are both small and close in value, thenC(x, h1) ≈ C(x, h2). A similar limiting process
as that used in Eqs.(7) and (15) is used to define a new coefficient, Cn(x), which is independent of
the step size and approximates the unknown coefficients,

Cn(x) ≈ C(x, h1) ≈ C(x, h2) ≈ a1f (n+d)(x) (21)

The truncation error for the finite-difference equation is related to this approximation by,

lim
h→0

O(hn) = a1f
(n+d)(x)hn ≈ Cn(x)hn (22)

With the understanding that all functions are evaluated at x with appropriate step sizes h1 and h2,
the two finite-difference equations are rewritten with reduced notation,

f (d) = FD
(d)
1 + Cnh

n
1 (23)

f (d) = FD
(d)
2 + Cnh

n
2 (24)

These are two linear equations in two unknowns, f (d) and Cn. They are solved for Cn, yielding

Cn =
FD2 − FD1

hn1 − hn2
(25)

With this computed value of Cn, an estimate of the truncation error for the FDD approximation
of order n using a step size h1 is,

TEn(x, h1) = Cn(x)hn1 (26)

This estimate can also be applied to the truncation error associated with step size h2, but the decision
to use it with h1 arises from the need to obtain an upper bound on the truncation error, since h1 > h2.
Furthermore, this derivation of the truncation error estimate is almost identical to the initial steps
of a Richardson extrapolation procedure.22 However, the goal of Richardson extrapolation is to
increase the order of the given finite-difference approximation, whereas the goal of this study is to
obtain an error estimate for the given finite-difference approximation.

An example of the use of the estimated truncation error from Eqs.(25) and (26) is given in Figure
2. The similarities between this estimated truncation error and the absolute error from Figure 1 are
clear. Both exhibit a decreasing truncation error until a limiting point is reached, followed by an
increasing roundoff error. The region in which truncation error begins to give way to roundoff error
contains the optimal step size. Note the ‘stray minima’ points within the roundoff error portion of
Figure 2, for which the estimated error is zero. These points occur because the successive finite-
difference approximations from Eq.(25) are equal (due to roundoff errors), causing the estimate for
the truncation error to be zero. Such stray minima are not uncommon for step sizes that are so
small that roundoff error dominates the computations. However, their existence does not lessen the
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Figure 2. Estimated truncation error for f(x) = sin(x) at x = π/4, using the O(h)
forward-difference derivative approximation. Error trends are preserved as com-
pared to the true error in Figure 1.

effectiveness of using estimated truncation error plots to analyze error trends. Namely, roundoff
error affects the estimated truncation error at nearly the same value of h at which it affects the true
error. This fact provides a powerful analytical tool with which to determine the optimal step size
that minimizes the total error of the chosen finite-difference approximation.

There is one important difference between the estimated truncation error and the true error that
remains to be addressed. Namely, the step size h that minimizes the estimated truncation error is
not exactly the same as the h that minimizes the true error. This is due to fact that the estimated
truncation error is computed using two distinct step sizes. Given the step sizes used in Eq.(25), the
step-size reduction ratio t can be defined as t = h2/h1. The relationship between the estimated
optimal step size hopt,TE and the true optimal step size hopt,true is shown in Reference [26] to be,

hopt,true =

(
1

t∗

)1/(n+d)

hopt,TE (27)

t∗ =
1 + (1/t)d

1− tn
(28)

This equation is critical because it bridges the gap between the estimated truncation error (which can
be computed) and the true error (which usually cannot be computed) for a given FDD method. It is
therefore confirmed that the estimated truncation error can in fact be used to construct an algorithm
that finds the optimal step size.

Roundoff Error

In the simplest sense, roundoff error is an error in the computation of a number caused by the fact
that the number is represented using finite numerals. Any finite-difference computation is subject to
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two types of roundoff error: subtractive cancellation error and condition error. Given two numbers a
and b represented in fixed precision, subtractive cancellation error occurs when a significant number
of the leading digits of a and b are equal. An indicative example of subtractive cancellation error is
seen by assuming that a and b are defined as,

a = 0.3142049 b = 0.3141550 (a− b)true = 0.0000499

If a 5-digit fixed precision representation (with standard rounding) is used to approximate a and b,
then the subtraction operation becomes,

a = 0.31420 b = 0.31416 a− b = 0.00004

This subtraction operation has error in the least significant digit of the result, as compared to the
true result. In general, fixed precision subtraction results in an error whose magnitude is at most
that of the least significant digit in the larger of the two numbers. An accurate upper bound to this
error is,

|(a− b)true − (a− b)| ≤ δmax(|a|, |b|) (29)

where δ is the precision of the representation. In the above example with 5-digit precision, δ =
10−5. For a standard double precision representation on a computer (defined by IEEE 754 [REF??]),
δ = 2−53. It is important to note that Eq.(29) only gives an upper bound on subtractive cancellation
error; there is no way to know the exact error.

In contrast to subtractive cancellation error, condition error occurs within the implementation of
the function f(x) itself. The function may involve trigonometric calculations, numerical integra-
tions, or any number of other mathematical operations when computing its result. Each of these
operations contains a small amount of error, which accumulates throughout the function, resulting
in a substantial error in the function result. Although this error cannot generally be predicted or
exactly computed beforehand, its upper bound can be estimated. Assuming that condition error
affects all digits in the result below a certain threshold, an approximation of the upper bound of the
error is given as,

|f(x)true − f(x)| ≤ ε|f(x)| (30)

where ε indicates the magnitude of the most significant digit affected by condition error. Although
ε is equal to machine precision for trivial and many built-in functions (sin, cos, etc...), in general
it is an unknown to be computed. Conversely, once ε is computed, it can be of great assistance in
determining the amount of condition error introduced by a given implementation of f(x).

The roundoff error bounds in a finite-difference computation are formed using the expressions for
subtractive cancellation and condition errors given in Eqs.(29) and (30). For the forward-difference
derivative approximation given in Eq.(4), using condensed notation,

FD
(1)
1 (x, h) = FD =

f(x+ h)− f(x)

h
=
f1 − f0
h

(31)

where subscripts for f are used to indicate the step size as a multiple of h.

Subtractive cancellation error is bounded by,

FDtrue − FD =
(f1 − f0)true − (f1 − f0)

h
(32)

|FDtrue − FD| ≤
δ|f1/0|
h

(33)

|f1/0| = max(|f1|, |f0|) (34)

8



where FDtrue indicates the true value of the FDD, in the absence of any roundoff errors. This is
distinct from the true derivative itself, which is in general unknown.

Condition error is bounded by,

FDtrue − FD =
(f1,true − f1)− (f0,true − f0)

h
(35)

|FDtrue − FD| ≤
ε1|f1|+ ε0|f0|

h
(36)

If h is small enough such that the code paths taken by f(x) and f(x + h) are the same (or
similar), then the magnitudes of the relative errors ε0 and ε1 introduced by both calls to f will be
the approximately equal. In addition, for the worst case, the signs of the errors will be the same,
causing the errors to compound. The condition error then simplifies to,

|FDtrue − FD| ≤
ε(|f1|+ |f0|)

h
(37)

In contrast, if h is large enough such that the implementation of f uses different code paths (with
different relative errors) to compute f(x) and f(x+ h), then this simplification does not hold. It is
assumed here that this situation will not occur when h is near its optimal value.

In the general case, both subtractive cancellation and condition errors affect the upper bound of
the error in the finite-difference approximation. The total error bound due to roundoff errors is the
sum of both error bounds,

|FDtrue − FD| ≤
ε(|f1|+ |f0|) + δ|f1/0|

h
(38)

where, in general, ε is unknown.

For the central-difference derivative approximation given in Eq.(10), using condensed notation,

FD =
f1 − f−1

2h
(39)

Using a formulation similar to the forward-difference case above, the total error bound due to round-
off errors is,

|FDtrue − FD| ≤
ε(|f1|+ |f−1|) + δ|f±1|

2h
(40)

|f±1| = max(|f1|, |f−1|) (41)

Roundoff error bounds for higher order finite-difference approximations are given in the Appendix
of Reference [26].

Total Error

To formulate the estimate for total error in a FDD, the general form of Eq.(16) is rewritten using
condensed notation,

f
(d)
true = FDtrue + Ctrueh

n (42)
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Subtracting the computed FDD, which contains roundoff errors, gives the total error in the FDD as
compared to the true derivative,

f
(d)
true − FD = FDtrue − FD + Ctrueh

n (43)

where the true FDD, FDtrue, is unknown. Taking the magnitude of the total error and applying the
triangle inequality gives an upper bound on the total error,

|f (d)true − FD| = |FDtrue − FD + Ctrueh
n| (44)

≤ |FDtrue − FD|+ |Ctrueh
n| (45)

If h is small enough such that Eq.(21) applies,

|f (d)true − FD| ≤
ε|Fε|+ δ|Fδ|

hd
+ |Cn|hn (46)

where the explicit expression for |FDtrue−FD| is given by Eq.(38), (40), or the appropriate round-
off error bounding equation from the Appendix of Reference [26]. For the commonly used 2nd-order
central-difference approximation of the first derivative,

|f ′true − FD| ≤
ε(|f1|+ |f−1|) + δ|f±1|

2h
+ |C2|h2 (47)
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Figure 3. Effect of condition error ε on the total error bound.

An example of the effect of condition error ε is seen in Figure 3. For the function f(x) = sin(x)
with x = π/4 and using the central-difference approximation, the total error bound from Eq.(47)
is plotted for various values of ε, and the estimated truncation error from Eq.(26) is also plotted for
comparison. C2 is computed as −13! f

(3)(x), and δ = 2−53 since double-precision numbers are used.
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It can be seen that in the roundoff error range of step sizes, the ε value for which the total error
bound most closely approximates the estimated truncation error is ε = 10−16. This agrees with
the fact that the sin() function is accurate to machine precision. Furthermore, the ε = 10−16 curve
minimizes at almost exactly the same step size value as the estimated truncation error curve. This is
not coincidental, and is used to develop an optimal step-size estimation algorithm.

Figure (3 also shows the effect of using step sizes large enough to violate the ‘sufficiently small
step size’ assumptions made so far. For these step sizes, the computed estimated truncation er-
ror from Eq.(26) seem almost nonsensical, and certainly do not follow the predicted truncation or
roundoff error patterns derived in this research. This fact is also used when developing an optimal
step-size estimation algorithm.

Optimal Step Size Derivation

The optimal step size hopt that minimizes the true total error of the finite-difference approximation
also minimizes the error function E(x, h), defined as the right-hand side of Eq.(46),

E(x, h) =
ε|Fε|+ δ|Fδ|

hd
+ |Cn|hn (48)

Minimizing E(x, h) with respect to the step size yields the analytical solution for the optimal step
size hopt as a function of all parameters of interest:

hopt =

[
d

n

1

|Cn|
(ε|Fε|+ δ|Fδ|)

]1/(n+d)
(49)

This equation takes into account the derivative of interest d, the order n of the finite-difference
equation, the system’s numerical precision δ, and the function’s condition error ε. This equation
simplifies to the step-size rule-of-thumb approximations of Gill et al.29, 30 for the case of the first
derivative (d = 1) using the forward-difference approximation (n = 1).

If the condition error ε is not known, but the optimal step size hopt can somehow be determined,
then the condition error can be computed as,

ε =
1

|Fε|

(n
d
|Cn|hn+dopt − δ|Fδ|

)
(50)

SIMPLE STEP SIZE ESTIMATION ALGORITHM

The total error function in Eq.(46) is analyzed from a logarithmic standpoint to reveal linear
trends as the step size moves away from its optimal value.

lnE(x, h) = ln

(
ε|Fε|+ δ|Fδ|

hd
+ |Cn|hn

)
(51)

lnE(x, h) =


ln (ε|Fε|+ δ|Fδ|)− d lnh h� hopt

ln |Cn|+ n lnh h� hopt

(52)

This reformulation indicates that the slope of the total error function, on a log-log scale, approaches
the negative of the differentiation order d as the step size gets small, and approaches the FDD order
n as it gets large. There are two caveats to this rule. First, because roundoff errors are unpredictable,
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the limit for small step sizes acts as a best-fit line; the true errors exhibit small fluctuations about
this line. Second, the limit for large step sizes only applies up until the point where the nth-order
truncation error estimate is no longer valid. As proven earlier, the truncation error estimate from
Eqs.(25) and (26) accurately models the true error when used with the correction factor in (27).
Therefore, it is subject to the same linear trends regarding small and large step sizes. Furthermore,
since the estimated truncation error is not a valid approximation to the true error for very large step
sizes, it is expected that the linear trend (in the logarithmic sense) does not hold for these step sizes.

Given the theory derived and analyzed in preceding sections, an algorithm can now be developed
that iteratively finds the optimal step size hopt for a given FDD method. Although the algorithm is
completely general, it is beneficial to develop it using the following example problem as a reference:
A 2-body orbit about the Earth, with orbital parameters given in Table 1, is propagated for a quarter
of its period from a fixed initial true anomaly of ν0 = 0◦. Danby’s method∗ is used to solve
Kepler’s equation,31 and the final result is the true anomaly νf at the final time tf . Figure 4 shows
the estimated truncation error when the derivative dνf/dtf is computed using the second-order
central-difference method.

Table 1. Orbital parameters for propagated orbit.

µ 398600.4 [km3/s2]
a 200000 [km]
e 0.96453
i 51.619◦

ω, Ω, ν0 0◦

(t0, tf ) (0, 222533.8) [s]

A simple step-size optimization algorithm can be developed by visually analyzing Figure 4. The
general goal of this algorithm is as follows: Start with a very large initial step size, ignore any initial
invalid truncation errors, find the region of valid truncation errors, and stop when roundoff error
overtakes truncation error.

1. A large initial step size h0 is chosen, preferably one that is a power of 2 as explained in
Reference [26]. If h0 is too large, then the estimated truncation errors will be invalid, and it
has been proven that in such cases the estimated truncation error slope will not, in general, be
n. However, it has been observed that in isolated cases, a very large step size may result in
a truncation error slope nearly equal to n by coincidence. These cases occur sporadically; it
may happen for a particular hi and hi+1, but will only occur for a prolonged sequence of step
sizes if the truncation error is actually valid.

2. A step-size reduction ratio t is chosen, which relates two consecutive tested step sizes by
t = h2/h1. It was shown that the estimated truncation errors associated with these step sizes
should have a slope equal to the FDD order (on a log-log scale), which in this case is n = 2.
In addition, t should be chosen as an inverse power of 2 so that h2 will also be a power of 2.

∗A useful summary of Danby’s method for solving Kepler’s equation is given at http://www.cdeagle.com/
ommatlab/toolbox.pdf.
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Figure 4. A truncation error plot used to develop the simple algorithm.

3. The current step size hi and next step size hi+1 = thi are used with Eqs.(25) and (26)
to compute a truncation error estimate. This is compared to the previous truncation error
estimate, and the resulting slope is compared to the desired slope n. To accommodate the
anomalous cases described in step 1, a counter variable is used to keep track of the number
of consecutive step sizes with a near-correct truncation error slope. If the current slope is
correct, then the counter is incremented and control goes to step 4. Otherwise, control goes
to step 6.

4. If the counter has passed a predetermined limit, then a sufficient number of consecutive test
step sizes have a truncation error slope equal to n. It is therefore assumed that the ‘valid
truncation error’ range of step sizes has been reached; a flag is set to indicate this and control
goes to step 5. However, if the counter has not yet reached its limit, then control returns to
step 3 without setting the ‘valid truncation error’ flag.

5. Because the current step size results in a valid truncation error estimate, the associated Cn
value from (25) is saved for later use. Control returns to step 3.

6. If the slope from step 3 is not correct and the ‘valid truncation error’ flag is not set, then
the counter is reset to zero and control returns to step 3. However, if the ‘valid truncation
error’ flag is set, then it is assumed that roundoff error has caused the truncation error slope
to deviate and control goes to step 7.

7. When control reaches this step, it is assumed that the current step size hi is the optimal
uncorrected step size. Although not absolutely necessary, it is prudent to apply the step-
size correction from (27): hopt,true = (t∗)−1/(n+d)hi. Using this optimal step size and the
previously saved Cn value, the condition error ε can be computed using (50). The algorithm
exits with the optimal step size hopt,true and the computed condition error ε.
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Steps 3-5 of this algorithm create a logic which skips over any initial truncation error inaccuracies,
recognizes the region of valid truncation error, and terminates at the first sign that roundoff error has
begun to dominate the FDD. The optimal step size is then used to compute the condition error of the
function. For the orbit propagation example in Figure 4, the solution computed by this algorithm
is given in Table 2. Note that the corrected step size is adjusted to the closest power of 2 which
has already been tested, to reduce function evaluations. In both corrected and uncorrected cases,
the function condition error ε is computed to be smaller than machine precision (2−53) and the total
number of function calls is 103. The relative error is computed using the true derivative, which is
6.94245607959e−7 [deg/s].

Table 2. Solution for Kepler orbit propagation problem.

uncorrected corrected

hopt [s] 4.0 3.0
dνf/dtf [deg/s] 6.94245608057e−7 6.94245607964e−7
Relative Error 1.402e−10 6.98e−12

Extension to Multidimensional Functions

More often than not, the function being differentiated is a vector function of a vector input. In
this case, the Jacobian matrix of the function with respect to the input is necessary for gradient-
based optimization techniques. When FDD methods are used to compute the constituent gradient
vectors of the Jacobian matrix, a single step size is usually used for each input variable. However,
there is no guarantee that a given step size will be optimal for every component of the output vector.
Because of this, it is of interest to consider the derivative of each output component with respect to
each input variable separately.

The simple step-size search algorithm could certainly be used for a given input variable, and di-
rected towards analyzing the truncation error for only a particular output variable. This algorithm
would then be run from within a nested loop, with the outer loop iterating over the n input variables,
and the inner loop iterating over the m output variables. Such an analysis method has a cost (with
respect to function calls) of O(nm), but this is easily reduced by noting that the function of interest
generally computes all outputs for any given set of inputs. With this in mind, it is straightforward
to modify the search algorithm by having it analyze the estimated truncation error for each element
of the function’s output vector independently, within an internal loop. Not only does this reduce the
algorithm’s functional cost to O(n), but it also noticeably cuts down on the performance and mem-
ory overhead involved with more frequent calls of the algorithm. All that remains is to determine
which computed step size to use for any given input variable, since optimal step sizes are computed
for each output variable. Various options for this decision are discussed in Reference [26].

EXAMPLES

An implementation of the simple step-size search algorithm called AutoDX has been developed,
and is now used to determine the optimal step size for a variety of test functions. For each test case,
the results of the AutoDX algorithm are compared to those obtained using two other methods: (1)
using a rule-of-thumb step size and (2) using the Gradient Tuned Algorithm (GTA).32 The GTA is
a statistical step-size search algorithm that starts with a very small step size, and analyzes ‘batches’
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of FDD values at each step size up to some maximum. The algorithm stops when the dispersion of
step sizes within each successive batch reaches a minimum.

Fundamenal Functions

Fundamental functions compute their output by applying primitive operators (i.e. add, subtract,
multiply, divide) to built-in functions. Examples are polynomial, trigonometric, and exponential
functions, or combinations thereof. The output of such a function is expected to have little to no
condition error, since built-in functions and primitive operators are accurate to machine precision.
An example of this is the following periodic function

f(x) = sin(x) cos(3x) (53)

This function is differentiated at x = −3.95, using the O(h2) central-differences method. The
initial large step size for the AutoDX algorithm is taken to be h0 = 1 + |x|, and the rule-of-thumb
step size is hrt = 5e−6|x|. The solutions using the three comparison algorithms are given in Table
3, with the AutoDX results computed using the corrected optimal step size. The AutoDX algorithm
determined that the maximum valid step size hmax = 0.25, and the condition error in f(x) is less
than machine precision.

Table 3. Optimal step size hopt for computing derivative of f(x) = sin(x) cos(3x).

hopt |True Rel Err| |Est Rel Err| Num f()

Rule-of-thumb 1.98e−5 1.06e−9 3.19e−9 2
AutoDX 1.91e−6 1.26e−12 2.96e−11 85

GTA 4.95e−7 2.06e−11 1.04e−14 164

The estimated truncation error plot for this problem, given in Figure 5, shows that the rule-of-
thumb step size is clearly too large even though the function is well-conditioned. In this case,
even if the alternate rule-of thumb hrt = 1e−7 were to be used, the error would be well into the
roundoff error range. One seemingly odd result in Figure 5 is that the GTA optimal step size seems
to have almost zero estimated error, but Table 3 indicates an increased true relative error. This
discrepancy is explained by the fact that the GTA algorithm honed in on a step-size region with very
small dispersion due to coincidental roundoff error cancellations. Such a repeated occurrence of
nearly equal FDD values causes the Cn estimate from (25) – and therefore also the truncation error
estimate from (26) – to be nearly zero. This is a prime example of how roundoff errors can make
the true error appear to be very small, and is precisely why step sizes smaller than the true hopt (as
approximated by the corrected AutoDX hopt) should be avoided.

Algorithmic Functions

Algorithmic functions are those that implement a nontrivial algorithm to produce their results.
They often employ iterative methods such as numerical integrators or solvers to compute a result.
Because numerical errors can compound within these iterations, algorithmic functions are expected
to have a greater condition error than simple fundamental functions. To showcase the performance
of AutoDX for step-size optimization with algorithmic functions, a Lunar intercept problem is con-
sidered. Given an initial Earth-centered orbit, an optimal 2-body transfer to the Moon is computed.

15



1.E‐11 

1.E‐10 

1.E‐09 

1.E‐08 

1.E‐07 

1.E‐06 

1.E‐05 

1.E‐04 

1.E‐03 

1.E‐02 

1.E‐01 

1.E+00 

1.E+01 

1.E‐16  1.E‐15  1.E‐14  1.E‐13  1.E‐12  1.E‐11  1.E‐10  1.E‐09  1.E‐08  1.E‐07  1.E‐06  1.E‐05  1.E‐04  1.E‐03  1.E‐02  1.E‐01  1.E+00  1.E+01 

 A
bs
ol
ut
e 
Er
ro
r 
in
 d
f/
dx
 

Step Size h 

Es6mated Trunca6on Error (TE) vs Finite‐Difference Step Size 

f(x) = sin(x) cos(3x) 
x = ‐3.95 

O(h2) Central Differences 

Rule‐Of‐Thumb hrt 

AutoDX hopt 
GTA hopt 

Figure 5. Estimated truncation errors for f(x) = sin(x) cos(3x) example.

The initial and Lunar orbits (given in Table 4) are frozen, and the epoch time t0, initial Lunar true
anomaly ν0,Moon, and initial orbit true anomaly ν0 are all specified. The satellite coasts on the initial
orbit for time dt1, after which an impulse ∆v is applied to put the satellite on a transfer orbit. After
coasting on the transfer orbit for time dtga, the satellite arrives at the Moon at tf = t0 + dt1 + dtga.
This setup is illustrated in Figure 6. The performance index for this problem is

J = ‖∆v‖ = ∆v (54)

and the optimization variable and constraint vectors are

x> =
(
dt1 dtga ∆vx ∆vy ∆vz

)
1×5 (55)

c =
(
rMoon(tf )− r(tf ) = 0

)
3×1 (56)

This example also shows the effectiveness of using AutoDX for multidimensional problems.

The optimization process drives c to zero while minimizing the total cost (∆v), and requires
the gradients of both of these quantities with respect to the optimization variables x. The latter

gradient has a simple analytical solution, but the Jacobian of the constraint function
∂c

∂x
is much

more difficult to compute. Because this problem involves purely ballistic trajectory arcs, the state
transition matrix approach of Goodyear33, 34 or the variational method of Ocampo and Munoz1

can be used to compute a near-analytical Jacobian matrix. However, it is much faster in terms of
programming complexity and runtime to use a FDD method.

AnO(h2) central-difference FDD method is used to compute each element of the Jacobian matrix
∂cj
∂xi

(1 ≤ i ≤ 5, 1 ≤ j ≤ 3). The reference x is the Hohmann transfer initial guess,

x>0 ≈
(
37391 414135 -1.34 -4.09 0.18

)
1×5 (57)
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Table 4. Initial and Lunar orbits for the Lunar transfer example.

Initial Orbit Lunar Orbit

a 24555.6[km] 384400.0[km]
e 0.731921 0.0549
i 51.619◦ 19.0◦

ω 45.0◦ 0.0◦

Ω 250.0◦ 0.0◦

ν0 0.0◦ 90.0◦

Figure 6. Setup of the Lunar transfer problem. The initial orbit is in red, and the
transfer orbit is in blue.

where times are in [s] and velocities are in [km/s]. The rule-of-thumb step size for each element
of x is hi,rt = 10−6(1 + |xi|). For AutoDX, the initial large step sizes are hi,0 = 1 + |xi|. Since
AutoDX computes the full gradient vector for a particular element i of x, it must be run in a loop
over each i. On the other hand, GTA computes an individual partial derivative (for a given i and j),
so it must be run in a double nested loop over each i and j. As discussed previously, there may be

a separate optimal step size hopt associated with each partial derivative
∂cj
∂xi

. Table 5 gives each of

these step sizes as computed by AutoDX and GTA, as well as the single rule-of-thumb step size for
each xi.

It is clear that the optimal step sizes chosen by AutoDX and GTA are very similar for all elements
of x, but are several orders of magnitude removed from the rule-of-thumb step size hrt for the first
two elements (dt1 and dtga). A more distinct contrast is seen when comparing the number of
function evaluations used by each method, as shown in Table 6. As expected, using a fixed step
size completely outperforms all other methods. GTA has a high number of function evaluations
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Table 5. Optimal step sizes for each element of x, given in [s] for dt and [km/s] for ∆v.

c1 c2 c3

Rule-of-Thumb AutoDX hopt AutoDX hopt AutoDX hopt
hrt GTA hopt GTA hopt GTA hopt

dt1 3.74e−2
4.88e−4 2.44e−4 9.77e−4
5.23e−4 4.11e−4 4.86e−3

dtga 4.14e−1
2.00 1.00 2.00
6.21 7.45 6.63

∆vx 2.34e−6
3.81e−6 1.91e−6 1.91e−6
4.21e−6 3.04e−6 4.21e−6

∆vy 5.09e−6
9.54e−7 9.54e−7 7.63e−6
7.13e−6 8.15e−6 7.64e−5

∆vz 1.18e−6
1.91e−6 2.38e−7 1.91e−6
1.18e−6 1.30e−6 1.18e−6

for two reasons: it must be run in a doubly-nested loop, and many function evaluations must be
performed to get good statistical approximations. The computational cost of AutoDX shown here is
a worst-case scenario where the initial step size h0 is taken to be very large. In practical use, such a
large step size would only be used once; it could be reduced for future invocations of AutoDX. In
addition, Reference [26] discusses several optimizations that can be implemented within AutoDX
to significantly reduce its computational cost.

Table 6. Number of function evaluations in computing
∂c

∂xi
.

Rule-of-Thumb AutoDX GTA

dt1 2 57 392
dtga 2 39 532
∆vx 2 43 492
∆vy 2 47 492
∆vz 2 47 512

Total 10 243 2420

CONCLUSIONS

The research presented here, and further detailed in the author’s dissertation,26 gives a rigorous
mathematical analysis of step-size estimation theory. The tools derived through this analysis are
used to estimate the error in a particular finite-difference derivative (FDD). In particular, it is shown
that the FDD error follows very predictable patterns (on a log-log scale) for both large and small
step sizes. For large step sizes, truncation error in the FDD approximation dominates and the slope
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of the estimated FDD error with respect to the step size is equal to the order of the chosen FDD
method. For small step sizes, roundoff error dominates and the best-fit slope is the negative of the
derivative being estimated.

Combining information about the estimated truncation error yields a simple step-size estimation
algorithm, which effectively seeks out the step size which minimizes the sum of roundoff and trun-
cation errors. This algorithm is robust enough to skip over any initial step sizes which may be too
large, and recognize when the region of predictable step size has been reached. The optimal step
size obtained by this algorithm is easily adjusted to match the true optimal step size by using a
constant correction factor. In addition, this algorithm is shown to easily extend to multidimensional
functions, while retaining memory efficiency and scalability.

It should be noted that this research provides two main benefits over existing step-size estimation
algorithms. Firstly, it ties together the optimal step size with the condition error of the differentiated
function’s implementation. Having a condition error estimate can be shown to be extremely bene-
ficial in verifying a function’s accuracy. Secondly, this research not only provides an optimal step
size, but also quantifies the validity of that step size with respect to changes in the independent vari-
able. This allows a specific step size to be used within an encompassing optimization loop without
having to re-run the algorithm at every optimization iteration.

Finally, it is recognized that significant optimizations can be made to the AutoDX algorithm. As
it stands, AutoDX requires significantly more function evaluations as a rule-of-thumb method, but
this can certainly be reduced with ongoing research.
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