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Abstract

Formation flying is an enabling technique for
numerous proposed satellite missions. The TeamAgent
software system, based on ObjectAgent technology, is
designed to enable multiple satellites to cooperate
autonomously with particular focus on formation
flying. A generalized agent-based software architecture
for formation flying has been devised and is being
applied to the Air Force Research Laboratory’s
TechSat 21 technology demonstration mission.

1 Introduction

Multiple satellite constellations are envisioned for a
wide variety of applications, including Earth and space
science, military applications such as Synthetic
Aperture Radar, and communications systems for
everything from cellular phones to high-speed Internet
access. Bauer et. al. [1] describe a number of these
proposed missions and the technologies required for
their success. Primary reasons for the use of multiple
satellite constellations include higher performance and
greater flexibility in terms of reconfigurability and
upgradability options. By using a large number of
platforms in a fleet, redundancy is increased and the
chances of a point failure are reduced.

In each of the applications, cost is one of the most
important factors. The small size, mass, and modularity
of miniaturized devices can drastically decrease the
development cost per platform, and thus open up the
possibility of constellations composed of hundreds or
even thousands of nanosatellites. With these large

numbers, however, comes the daunting task of
coordinating the multiple satellites. The development
of a control architecture for fleets of satellites is now
an enabling technology.

Two areas of research involved in the development
of this control architecture are the development of the
estimation and control algorithms for distributed
satellite systems and the software implementation of
these algorithms on a real-time system. Several
researchers (e.g. [2]–[9]) are working on the first area
while Princeton Satellite Systems (PSS) is developing
the ObjectAgent and TeamAgent systems to address
the second.

The ObjectAgent system is an agent-based real-
time architecture for distributed, autonomous control
and TeamAgent applies OA to the problem of
controlling multiple cooperative satellites. These
systems were originally developed under Air Force
Research Laboratory (AFRL) SBIR funding in support
of its TechSat 21 satellite mission, a technology
demonstration program that will involve three satellites
flying in formation and acting as a “virtual” satellite.
The ObjectAgent cluster management software will
enable the three Techsat-21 spacecraft to perform high
precision formation flying to form a single virtual
instrument [10], [11].

During the first phase of development, ObjectAgent
was prototyped in Matlab. A complete, GUI-based
environment was developed for the creation,
simulation, and analysis of multi-agent, multi-satellite
systems. Basic collision avoidance and reconfiguration
simulations were performed for a cluster of four
satellites [12],[13]. ObjectAgent has been ported to
C++ at the V1.0 level and the present architecture runs
on a PowerPC 750 running Enea’s OSE operating
system [14]. Collaborative efforts are underway to
incorporate a number of the formation flying



algorithms being developed by other researchers into
the TeamAgent software. This paper describes the
status of that effort and its implementation on TechSat
21.

The following section provides an introduction to
agents for spacecraft autonomy and gives a general
overview of the ObjectAgent software architecture.
The next section describes an agent architecture for the
control of multiple satellite formation flying. This is
followed by a discussion of the application of this
architecture to TechSat 21. The paper concludes with a
description of the future work to be performed.

2 Software Agents in Space

The use of software agents is becoming increasingly
popular as a method to improve the level of spacecraft
autonomy. There is no consensus on the exact
definition of a software agent, but a standard definition
is given by Weiss [15]:

An agent is a computational entity that can be
viewed as perceiving and acting upon its
environment and that is autonomous in that its
behavior at least partially depends on its own
experience.

Bradshaw [16] and Knapik and Johnson [17]
provide good overviews of the many different
definitions used by researchers in the fields of artificial
intelligence and computer science.

The major benefit of agents is their autonomy.
Intelligent agents can be given high level goals and
then autonomously determine the appropriate actions
to fulfill these goals. This can include interaction and
collaboration with other agents. Agent based software
is a form of distributed programming and as such, it
maps naturally onto the requirements of distributed
spacecraft [12].

There are many potential benefits to using agents
onboard spacecraft [14]. These include:

• Greatly increasing the level of autonomy through
automatic decomposition of high-level goals;

• Increasing the flexibility and adaptability of flight
software through dynamic agent uploads;

• Improving the reliability of spacecraft and fleets
of spacecraft by incorporating fault detection at
both high and low levels; and

• Reducing the need for large ground support
organizations.

2.1 NASA’s Deep Space 1 Remote Agent
Experiment

The first demonstration of agents used for control
onboard spacecraft was NASA’s Deep Space 1 (DS-1)
Remote Agent Experiment [18]. During the experiment
in May 1999, the spacecraft was sent a list of goals
instead of the usual detailed sequence of commands to
execute. The Remote Agent (RA) software generated a
plan to accomplish these goals and then executed this
plan, monitoring for hardware faults during execution.
Despite some minor glitches, the Remote Agent
Experiment was a complete success and achieved
100% of its validation goals [19].

The RA software is installed as a layer on top of the
regular flight software, an approach that requires the
agent to process a lot of information and to be very
intelligent. The complexity of using this approach to
space flight software was evident when many of its
capabilities were stripped off prior to launch and
replaced by the more conventional Mars Pathfinder
software [20]. (Additional capability was uploaded
after launch.)

2.2 ObjectAgent Software for
Autonomous Spacecraft

The ObjectAgent Software Architecture goes
beyond the DS-1 remote agent experiment by using
agents as the basis of the system rather than as a top
layer. This is a key feature that distinguishes
ObjectAgent from other agent architectures. This
architecture allows decision-making, including fault
detection and recovery capabilities, to be built in at all
levels of the software. This alleviates the need for
extremely intelligent high-level agents and simplifies
the software interfaces.

Each agent is multi-threaded and composed of
skills. These skills are user-defined and determine the
functionality of the agent. Generally, each skill
corresponds to one basic function, has inputs and
outputs, and triggers one or more actions. An agent is
aware of its skills, inputs, and outputs and built-in
skills enable it to hunt for inputs and automatically
configure itself upon launch. In this sense, an
ObjectAgent system is self-organizing.



A fundamental component of ObjectAgent is the
flexible messaging architecture that provides a reliable
method for agent-to-agent communication both on a
single processor and across networks. Simplified
natural language is used for all messages, which
enables end-users to easily understand agents and
command them. A message-based communication
architecture was selected because it naturally supports
distributed systems.

Figure 1 shows the C++ implementation of an OA
agent running on Enea’s real-time operating system,
OSE. An agent consists of three primary OSE
processes — the Main Agent process, the Dispatcher
process, and the Collection Center process — and any
number of additional skill processes. Each process can
be thought of as a thread.

The Main Agent process is the first process to run
when an agent is created. This process is responsible
for initializing the agent, which consists of creating the
common objects required by the agent and for starting
the other processes. After initialization, the Main
process responds to messages that do not involve the
direct transmission of or request for data.

Each skill runs as a separate process and has its
own inbox and outbox for receiving and sending data.
The Collection Center receives all incoming messages
and passes them on to the appropriate inbox for
processing. Data and requests for data are placed in the
inbox of the skill that either needs or can provide that
information. All other messages are passed to the Main

process. The Dispatcher sends the outgoing messages
that have been created by the other processes.

More detailed information about the ObjectAgent
software architecture can be found in [14].

2.3 TeamAgent for Multiple Satellite
Constellations

The TeamAgent System applies ObjectAgent to the
problem of controlling multiple cooperative satellites.
The concept of using agents for formation flying is
promising for several reasons. Agents provide a
modular, reconfigurable way to implement algorithms
in a distributed environment. Agents are also robust,
flexible, and may be easily extended to larger numbers
of spacecraft.

In Phase I, software development emphasized the
robustness of agents. Preliminary comparisons were
also made of several high-level agent organizations,
along with varying degrees of satellite intelligence, to
analytically assess their impact on communication,
computation, performance, and reliability. The results
indicate that an autonomous, agent-based design
provides increased reliability and performance over
traditional satellite operations for the control of these
clusters [12], [13].

Whereas the first phase of development
concentrated on the organization of spacecraft-level
agents, the second phase is concentrating on the actual
software implementation of formation flying
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algorithms. The following sections present an agent
architecture that has been developed for formation
flying and its application to TechSat 21.

3 Agent-based Formation
Flying

As discussed earlier, formation flying is an enabling
technology for many space-based applications. The
control problem for multiple satellite formations is
well known, and has been the recent subject of study
for several researchers. At Texas A&M ([5], [6]), the
effects of gravitational perturbations are investigated to
identify J2-invariant orbits. At Stanford [3], inverse
dynamic optimization is used to develop control laws
for on-off thrust actuation. Collision avoidance and
auctioneering algorithms are being developed at
Honeywell [2] to improve cluster management.

This section presents a generalized agent
architecture for the formation flying control of three
satellites in a circular orbit. The agents were developed
and simulated in Matlab with the ObjectAgent software
package. The reference orbit has a semi-major axis of
7500 km and an inclination of 48 degrees. It is
assumed that each satellite is equipped with GPS
sensors and an inter-satellite link (ISL) that enables
communication between all spacecraft. We first
provide an overview of the control system, followed by
a description of the agent block diagram. The results of
a reconfiguration maneuver are presented at the end of
the section.

3.1 Control System Overview

The objective of a formation flying control design is to
command and control individual vehicles so that they
function as a single system. The primary tasks of the
control system should include:

• Formation Planning
• Formation Keeping
• Reconfiguration
• Collision Avoidance
• Fault Detection, Isolation, & Recovery

The design presented here incorporates only the first
three tasks, which represent the basic operations of
formation flying. The design could be easily extended,
however, by simply adding the appropriate agents for
collision avoidance and fault detection; the existing
agents would require little or no modification. This is
an example of the benefits of using agents.

Two formation types are considered:
1) Leader/Follower: The spacecraft are equally

spaced in the along-track direction with no
relative motion.

2) Hill’s: The spacecraft are equally phased around
an ellipse with relative motion that follows the
first order Hill’s equations.

For the cluster to maintain either of these
formations, it performs Formation Keeping, which
incorporates closed loop control. In order to transition
from one formation to the other, or to resize the current
formation, it carries out a Reconfiguration maneuver.
The Formation Planning task includes generating the
desired trajectories for the spacecraft to follow,
whether it is for a static formation or a reconfiguration.

Long-term formation keeping is perhaps the most
challenging goal in a formation flying mission. There
are three steps necessary to achieve this goal: 1)
obtaining accurate estimates of relative position and
velocity, 2) rejecting those disturbances which cause
the satellites to drift apart, and 3) conserving fuel for
long duration missions. Clearly, these issues are
closely related.

Closed loop control techniques can be easily
designed to combat the gravitational, atmospheric and
solar perturbations that would disturb a satellite’s
desired orbit. Traditional station-keeping methods used
in industry apply periodic orbit correction maneuvers
to control the satellite’s orbital elements. These
techniques seek to minimize the required lifetime ∆V,
while maximizing the elapsed time between maneuvers
[21]. Formation keeping of multiple satellites,
however, requires precise control of each vehicle’s
relative position and velocity—absolute control in the
typical station-keeping sense will not suffice.

In formation flying, it is important to ensure that
the chosen control law is fuel-optimal for the entire
cluster. Given the significant noise content inherent in
relative state estimation, and the oscillatory motion
caused by gravitational perturbations, the challenge is
to design a control system that does not waste fuel by
constantly fighting acceptable disturbances.

Work in [5] presents methods for establishing J2-
invariant orbits, where the secular drift between
satellites is eliminated. Here, the relative orbits of two
satellites are defined such that the J2 gravitational
perturbation (earth oblateness) causes them to drift at
the same rate, greatly reducing the need to perform
repeated formation keeping maneuvers. This approach
enables long-term formation flying with reduced fuel
usage, but places restrictions on the achievable
formation types.

In addition, [6] presents a time-varying state
transition matrix for relative motion that includes the
effects of both the orbit eccentricity and the J2
perturbation. With continuous updates of the reference
orbital elements, this technique promises to provide a
more accurate model of the relative motion. Desired
state trajectories could be generated using this



transition matrix, preventing the controller from
fighting J2.

Another interesting approach is presented in [3],
where a two vehicle weighted fuel-time optimal control
law is defined for vehicles using “on-off” thrusters.
Combining this type of control approach in a J2
invariant orbit might be a practical design for long-
term formation keeping.

The agent-based design that follows employs
feedback control to enable formation keeping, and uses
a linear program solver to compute the fuel optimal
control history for reconfiguration maneuvers.

3.2 Agent Architecture

The agent-based architecture is designed to enable
autonomous formation flying activities. High-level
commands are received from either the ground or an
onboard planner, and the agents work together to
control the cluster appropriately. The three satellites
are organized in a hierarchy, with one satellite acting
as the Cluster Manager. It receives all high-level
commands and performs the cluster-level planning.

A block diagram of the agents is shown in Figure 2.
The two agents in bold blocks are unique to the Cluster
Manager satellite, while the remaining seven agents are
active on all satellites. Note that the block entitled
CASPER is meant to emulate the types of commands
that JPL’s onboard planner/scheduler “CASPER”
might provide [11]. Also note that while the Collision
Avoidance agent is not yet implemented, its location in
the block diagram has already been identified.

Each of the agents in the diagram consists of one or
more skills that define its functionality. The following
paragraphs provide a brief description of each agent’s
role in the system. A discussion of the skills is omitted
for brevity.

Formation Planner

This agent is unique to the Cluster Manager, and its
primary function is to command each satellite to the
proper formation. It receives high level commands
from CASPER in the input command, which includes
the desired formation type and size, the start and stop
times, and a command ID. The types of commands it
may receive from CASPER include:

• COMPUTE_FORMATION — The agent will
compute the fuel optimal trajectory for each
satellite to follow in order to achieve the new
formation (see below), along with the required
∆V. It will store the target states for each satellite
along with the command ID, and return the result
to CASPER in the output, response.

• ACHIEVE_FORMATION — Given the
command ID, the agent will find the previously
computed target states and send them out in
FF_Config to the Trajectory Generator agent on
board each satellite.

• KEEP_FORMATION — The agent will take the
information from the command input and route it
to the Trajectory Generating agents in
FF_Config.

The most interesting aspect of the Formation
Planner agent is how it computes the fuel-optimal
trajectories of each spacecraft for a reconfiguration
maneuver. First, a family of potential target states is
identified for each spacecraft. For example, in the
Leader/Follower formation there are six possible
configurations (each spacecraft may occupy one of the
points in the line). For each set of potential target
states, the simplex linear programming algorithm is
used with the discretized linear plant to calculate the
optimal control history for achieving that state. The

Trajectory
Generator 

Constraint 
Manager 

Collision 
Avoidance 

uHills_opt

xECI

Formation 
Planner FF_Config

Coordinate 
Transform

refECI xHills

command

Orbit 
Propagator 

response

xHills_1, 2, … N

Controller 

From SIM

uHills_fb

uHills_ca

uBODY

To SIM

Router 

xComm

CASPER 
Emulator 

Figure 2: Cluster Manager Block Diagram



case that uses the least amount of fuel for the cluster is
chosen, resulting in a globally fuel-optimal solution.

The cost function minimized in this algorithm is the
total fuel usage for that maneuver. Another practical
option is to equalize the fuel usage across the cluster.
In this case, the weighted fuel-time optimal solution is
found, where the weight is defined, in general, as the
ratio of the current satellite’s remaining fuel to the total
remaining fuel of the cluster.

Trajectory Generator

This agent receives the FF_Config command from the
Formation Planner agent and computes a
corresponding trajectory for the satellite to follow
(xHills_com). In the case of a reconfiguration
maneuver, the agent is commanded to achieve a target
state at a specified time. It first uses simplex to
compute the fuel-optimal control history (uHills_opt),
then computes the associated state trajectory
(xHills_com) that it should follow during that
maneuver. This approach combines the open loop
optimal solution with feedback control to combat
disturbances during the maneuver.

Orbit Propagator

This agent propagates the reference orbit, which is
used by each spacecraft to define its relative position
and velocity. First, it uses the absolute state of each
spacecraft in the ECI frame (xECI) to calculate the
centroid of the cluster. This state is then propagated
forward in time to produce a time-tagged set of future
reference states, and the result (refECI) is sent to both
the Coordinate Transform and the Constraint Manager
agents.

Coordinate Transform

This agent is used to supply several other agents with
the individual satellite’s relative position and velocity
in the Hill’s frame (xHills). Given the reference state
from the Orbit Propagator, and the estimated absolute
state of the satellite in the ECI frame, the relative state
is computed.

Controller

This agent is used to carry out low-level feedback
control. Given the desired state (xHills_com) from the
Trajectory Generator agent, and the measured state
(xHills) from the Coordinate Transform agent, it
computes the 3-axis thrust (uHills_fb) using the linear
controller presented in [7].

This constant gain controller is chosen solely for its
simplicity, as the focus of this paper is on the agent
architecture. It should therefore be noted that the
current approach could easily be replaced with a more

complex control law by simply designing a new skill
for the Controller agent.

Constraint Manager

This agent receives thrust commands in the Hill’s
frame from both the Controller agent (uHills_fb) and
the Trajectory Generator agent (uHills_opt), and
attempts to resolve any conflicts before commanding
the thrusters. If the Collision Avoidance agent were
active, its thrust commands would supercede those of
the other two agents.

In order to practically implement any true form of
feedback control, it is necessary to have positive and
negative thrusting available in all three axes. If this is
not the case, it becomes necessary to slew the
spacecraft to the proper orientation before carrying out
a maneuver. This approach can become increasingly
complex when multiple fuel tanks are used on a single
spacecraft, for an orientation must be chosen which
provides the best balancing of fuel.

3.3 Preliminary Results

Here we present the results of a reconfiguration
maneuver from a Hill’s formation to a Leader/Follower
formation. A plot of the cluster’s relative position in
the Hill’s frame during this maneuver is shown in
Figure 3. The hollow circles indicate the Hill’s
orientation at time 0, while the solid circles show the
final leader/follower formation.
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Figure 3: Reconfiguration Maneuver

At time t = 0 seconds, the cluster is initialized to a
Hill’s formation, with each satellite rotating around the
cluster center at a 1 km radius. At time t = 120
seconds, the CASPER emulator sends a command to
the Formation Planner agent, instructing it to compute



the ∆V required to achieve a Leader/Follower
orientation. The maneuver will begin at time 1000 and
complete at time 7000, taking just under one full orbit
to complete.

The Formation Planner agent takes the latest update
of xHills from each satellite, and uses Hill’s equations
to solve for their state at time 1000. (For much longer
duration planning, a high-fidelity propagator would
become necessary.) The planner then uses simplex to
compute the fuel-optimal control for maneuvering each
satellite to the three possible new positions. The case
that results in the minimum ∆V is chosen. The total
∆V for this maneuver is 6.06 m/s, with individual
spacecraft ∆V’s ranging from 1.94 m/s to 2.10 m/s.

The target states for each satellite and the target
time of 7000 are stored in the agent memory, and the
resulting ∆V and projected control history are sent
back to the CASPER emulator in response. Upon
receipt of this input, CASPER immediately sends the
Formation Planner another command, this time to
achieve the formation.

The Formation Planner agent sends the target
states, start time and stop time in the output
FF_Config, which goes to the Trajectory Generator
agents on board each satellite. This agent first uses its
latest estimate of xHills to solve for its future state at
time 1000. Given its beginning state and the target
state at time 7000, it calls simplex to find the fuel-
optimal control solution. The result is sent to the
Constraint Manager agent in uHills_opt.

The Trajectory Generator also uses the discretized
plant to compute the desired trajectory of the satellite
during the reconfiguration. This reference command is
then sent to the Controller agent, which will calculate
feedback control thrusts to stay on the trajectory.
Previously, the Controller agent had been following a
reference trajectory corresponding to unforced motion
in the Hill’s frame. It will continue to control to this
reference until time 1000, and will then begin
controlling to the reconfiguration trajectory.

The Constraint Manager receives the uHills_opt
input, which is a set of 3-axis forces in the Hill’s frame
at specified times. When it is time to command a
thrust, the agent transforms the force into the body
frame, and sends it to the simulation in uBODY.

The current simulation assumes 3-axis thrusting
capability, with no constraint on the thruster’s
achievable force. In a real system, however, constraints
on the size and direction of the thruster will certainly
be an issue. With limited directional capability, this
agent would have to compute the appropriate ECI-to-
Body quaternion for the spacecraft to align the thruster
correctly. If the magnitude is not achievable by the
thruster, then thrust mapping techniques must be used
to ensure the desired change in momentum is achieved
at the appropriate time.

4 Application to TechSat 21

This generalized architecture is being adapted for use
on TechSat 21. TechSat 21 (TS21) is an Air Force
Research Laboratory technology demonstration
mission to be launched in 2004 that will involve three
satellites flying in formation and acting as a “virtual”
satellite. During the one-year mission, the satellites
will fly in various configurations with relative
separation distances ranging from 100 m to 5 km and
one of the objectives is to do so autonomously.

One of the major advantages of this architecture for
the TechSat 21 mission is its modularity. The
architecture is expressly designed to be able to receive
commands from multiple sources. This will enable the
TechSat 21 cluster to be commanded to new
formations by a ground operator, an onboard planner
(such as JPL’s CASPER), or another spacecraft. The
modularity also enables different formation flying
algorithms to be simulated on the ground prior to orbit,
as well fully tested and researched on-orbit.

The Constraint Manager will be modified so that
TS21-specific constraints are not violated. The TechSat
21 spacecraft have only one thruster for orbital
maneuvering so the spacecraft must first be pointed in
the appropriate direction before thrusting. The
Constraint Manager will first command the appropriate
ECI-to-Body quaternion to align the thruster in the
desired direction, and then command the required
force. Repeated attitude maneuvers are impractical, for
each maneuver takes a significant amount of time and
tends to reduce the power available to the spacecraft.
This constraint prohibits the use of the Controller agent
for closed-loop control. However, formation keeping
may still be accomplished by using the Formation
Planner to conduct periodic reconfiguration
maneuvers.

A major concern with any flight program is
reliability. In addition to the robustness built into the
formation flying agents, a number of supporting agents
will be included for fault management. Some of these
agents will monitor the state of spacecraft hardware
while others will be used for the detection of agent-
level software faults. An Agent Monitor will monitor
all other agents to detect run-away processes and
deadlock. The Agent Monitor will then have the ability
to shut down any such problem agent. A plan for
rolling over the functionality of the Cluster Manager to
another spacecraft is also being devised.

5 Conclusion and Future Work

A generalized agent-based architecture for multiple
satellite formation flying has been developed and
tested in Matlab. This architecture is presently being



ported to C++ for demonstration on a real-time testbed
and eventual use on TechSat 21.

Work has recently begun on applying and
extending the TeamAgent architecture to larger
formations of satellites. This research is being
performed in collaboration with Prof. Jonathon How at
MIT and Prof. Mark Campbell at Cornell and the goal
is to create a robust architecture for the formation
flying of eight or more satellites.
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